COGNITIVE
DEVELOPMENT: THE THEORY OF JEAN PIAGET
Cognition
refers to thinking and memory processes, and cognitive development refers
to long-term changes in these processes. One of the most widely known
perspectives about cognitive development is the cognitive stage theory of a
Swiss psychologist named Jean Piaget. Piaget created and studied an
account of how children and youth gradually become able to think logically and
scientifically. Because his theory is especially popular among educators.
Piaget
was a psychological constructivist: in his view, learning
proceeded by the interplay of assimilation (adjusting new experiences to fit
prior concepts) and accommodation (adjusting concepts to fit new experiences).
The to-and-fro of these two processes leads not only to short-term learning,
but also to long-term developmental change. The long-term
developments are really the main focus of Piaget’s cognitive theory.
After
observing children closely, Piaget proposed that cognition developed through
distinct stages from birth through the end of adolescence. By stages he meant a
sequence of thinking patterns with four key features:
1.
They always happen in the same order.
2.
No stage is ever skipped.
3.
Each stage is a significant transformation of
the stage before it.
4.
Each later stage incorporated the earlier
stages into itself.
Basically
this is the “staircase” model of development was mentioned. Piaget proposed
four major stages of cognitive development, and called them
(1)
sensorimotor intelligence,
(2)
preoperational thinking,
(3)
concrete operational thinking, and
(4)
formal operational thinking.
Each
stage is correlated with an age period of childhood, but only approximately.
THE SENSORIMOTOR STAGE: BIRTH TO AGE 2
In
Piaget’s theory, the sensorimotor stage is first, and is defined as the period
when infants “think” by means of their senses and motor actions. As every new
parent will attest, infants continually touch, manipulate, look, listen to, and
even bite and chew objects. According to Piaget, these actions allow them to
learn about the world and are crucial to their early cognitive development.
The
infant’s actions allow the child to represent (or construct simple concepts of)
objects and events. A toy animal may be just a confusing array of sensations at
first, but by looking, feeling, and manipulating it repeatedly, the child
gradually organizes her sensations and actions into a stable concept, toy
animal. The representation acquires a permanence lacking in the individual
experiences of the object, which are constantly changing. Because the
representation is stable, the child “knows,” or at least believes, that toy
animal exists even if the actual toy animal is temporarily out
of sight. Piaget called this sense of stability object permanence,
a belief that objects exist whether or not they are actually present. It is a
major achievement of sensorimotor development, and marks a qualitative
transformation in how older infants (24 months) think about experience compared
to younger infants (6 months).
During
much of infancy, of course, a child can only barely talk, so sensory motor
development initially happens without the support of language. It might
therefore seem hard to know what infants are thinking, but Piaget
devised several simple, but clever experiments to get around their lack of
language, and that suggest that infants do indeed represent objects even
without being able to talk (Piaget, 1952). In one, for example, he simply hid
an object (like a toy animal) under a blanket. He found that doing so
consistently prompts older infants (18–24 months) to search for the object, but
fails to prompt younger infants (less than six months) to do so. (You can try
this experiment yourself if you happen to have access to young infant.)
“Something” motivates the search by the older infant even without the benefit
of much language, and the “something” is presumed to be a permanent concept or
representation of the object.
THE PREOPERATIONAL STAGE: AGE 2 TO 7
In
the preoperational stage, children use their new ability to
represent objects in a wide variety of activities, but they do not yet do it in
ways that are organized or fully logical. One of the most obvious examples of
this kind of cognition is dramatic play, the improvised
make-believe of preschool children. If you have ever had responsibility for
children of this age, you have likely witnessed such play. Ashley holds a
plastic banana to her ear and says: “Hello, Mom? Can you be sure to bring me my
baby doll? OK!” Then she hangs up the banana and pours tea for Jeremy into an
invisible cup. Jeremy giggles at the sight of all of this and exclaims: “Rinnng
Oh Ashley, the phone is ringing again! You better answer it.” And on it goes.
In
a way, children immersed in make-believe seem “mentally insane,” in that they
do not think realistically. But they are not truly insane because they have not
really taken leave of their senses. At some level, Ashley and Jeremy always
know that the banana is still a banana and not really a
telephone; they are merely representing it as a telephone.
They are thinking on two levels at once—one imaginative and the other
realistic. This dual processing of experience makes dramatic play an early
example of metacognition, or reflecting on and monitoring of
thinking itself. Metacognition is a highly desirable skill for success in
school, one that teachers often encourage (Bredekamp & Copple, 1997; Paley,
2005). Partly for this reason, teachers of young children (preschool,
kindergarten, and even first or second grade) often make time and space in
their classrooms for dramatic play, and sometimes even participate in it
themselves to help develop the play further.
The concrete operational stage: age 7 to 11
As
children continue into elementary school, they become able to represent ideas
and events more flexibly and logically. Their rules of thinking still seem very
basic by adult standards and usually operate unconsciously, but they allow
children to solve problems more systematically than before and therefore to be
successful with many academic tasks. In the concrete operational stage, for
example, a child may unconsciously follow the rule: “If nothing is added or
taken away, then the amount of something stays the same.” This simple principle
helps children to understand certain arithmetic tasks, such as in adding or
subtracting zero from a number, as well as to do certain classroom science
experiments, such as ones involving judgments of the amounts of liquids when
mixed. Piaget called this period the concrete operational stage because
children mentally “operate” on concrete objects and events. They are not yet
able, however, to operate (or think) systematically about representations of
objects or events. Manipulating representations is a more abstract skill that
develops later, during adolescence.
Concrete
operational thinking differs from preoperational thinking in two ways, each of
which renders children more skilled as students. One difference is reversibility,
or the ability to think about the steps of a process in any order. Imagine a
simple science experiment, for example, such as one that explores why objects
sink or float by having a child place an assortment of objects in a basin of
water. Both the preoperational and concrete operational child can recall
and describe the steps in this experiment, but only the concrete operational
child can recall them in any order. This skill is very helpful on
any task involving multiple steps—a common feature of tasks in the classroom.
In teaching new vocabulary from a story, for another example, a teacher might
tell students: “First make a list of words in the story that you do not know,
then find and write down their definitions, and finally get a friend to test
you on your list.” These directions involve repeatedly remembering to move back
and forth between a second step and a first—a task that concrete operational
students—and most adults—find easy, but that preoperational children often
forget to do or find confusing. If the younger children are to do this task
reliably, they may need external prompts, such as having the teacher remind them
periodically to go back to the story to look for more unknown words
The
other new feature of thinking during the concrete operational stage is the
child’s ability to decenter, or focus on more than one feature of a
problem at a time. There are hints of decentration in preschool children’s
dramatic play, which requires being aware on two levels at once—knowing that a
banana can be both a banana and a “telephone.” But the decentration of the
concrete operational stage is more deliberate and conscious than preschoolers’
make-believe. Now the child can attend to two things at once quite purposely.
Suppose you give students a sheet with an assortment of subtraction problems on
it, and ask them to do this: “Find all of the problems that involve two-digit
subtraction and that involve borrowing from the next column.
Circle and solve only those problems.” Following these
instructions is quite possible for a concrete operational student (as long as
they have been listening!) because the student can attend to the two subtasks
simultaneously—finding the two-digit problems and identifying
which actually involve borrowing. (Whether the student actually knows how to
“borrow” however, is a separate question.)
In
real classroom tasks, reversibility and decentration often happen together. A
well-known example of joint presence is Piaget’s experiments with conservation,
the belief that an amount or quantity stays the same even if it changes
apparent size or shape (Piaget, 2001; Matthews, 1998). Imagine two identical
balls made of clay. Any child, whether preoperational or concrete operational,
will agree that the two indeed have the same amount of clay in them simply
because they look the same. But if you now squish one ball into a long, thin
“hot dog,” the preoperational child is likely to say that the amount of that
ball has changed either because it is longer or because it is thinner, but at
any rate because it now looks different. The concrete operational child will
not make this mistake, thanks to new cognitive skills of reversibility and
decentration: for him or her, the amount is the same because “you could squish
it back into a ball again” (reversibility) and because “it may be longer, but
it is also thinner” (decentration). Piaget would say the concrete operational
child “has conservation of quantity.”
The
classroom examples described above also involve reversibility and decentration.
As already mentioned, the vocabulary activity described earlier requires
reversibility (going back and forth between identifying words and looking up
their meanings); but it can also be construed as an example of decentration
(keeping in mind two tasks at once—word identification and dictionary
search). And as mentioned, the arithmetic activity requires decentration
(looking for problems that meet two criteria and also solving
them), but it can also be construed as an example of reversibility (going back
and forth between subtasks, as with the vocabulary activity). Either way, the
development of concrete operational skills support students in doing many basic
academic tasks; in a sense they make ordinary schoolwork possible
The formal operational stage: age 11 and
beyond
In
the last of the Piagetian stages, the child becomes able to reason not only
about tangible objects and events, but also about hypothetical or abstract
ones. Hence it has the name formal operational stage—the period
when the individual can “operate” on “forms” or representations. With students
at this level, the teacher can pose hypothetical (or contrary-to-fact)
problems: “What if the world had never discovered oil?” or
“What if the first European explorers had settled first in
California instead of on the East Coast of the United States?” To answer such
questions, students must use hypothetical reasoning, meaning that
they must manipulate ideas that vary in several ways at once, and do so
entirely in their minds
The
hypothetical reasoning that concerned Piaget primarily involved scientific
problems. His studies of formal operational thinking therefore often look like
problems that middle or high school teachers pose in science classes. In one
problem, for example, a young person is presented with a simple pendulum, to
which different amounts of weight can be hung (Inhelder & Piaget, 1958).
The experimenter asks: “What determines how fast the pendulum swings: the
length of the string holding it, the weight attached to it, or the distance
that it is pulled to the side?” The young person is not allowed to solve this
problem by trial-and-error with the materials themselves, but must reason a way
to the solution mentally. To do so systematically, he or she must imagine
varying each factor separately, while also imagining the other factors that are
held constant. This kind of thinking requires facility at manipulating mental
representations of the relevant objects and actions—precisely the skill that
defines formal operations.
As
you might suspect, students with an ability to think hypothetically have an
advantage in many kinds of school work: by definition, they require relatively
few “props” to solve problems. In this sense they can in principle be more
self-directed than students who rely only on concrete operations—certainly a
desirable quality in the opinion of most teachers. Note, though, that formal
operational thinking is desirable but not sufficient for school success, and
that it is far from being the only way that students achieve educational
success. Formal thinking skills do not insure that a student is motivated or
well-behaved, for example, nor does it guarantee other desirable skills, such
as ability at sports, music, or art. The fourth stage in Piaget’s theory is really
about a particular kind of formal thinking, the kind needed to solve scientific
problems and devise scientific experiments. Since many people do not normally
deal with such problems in the normal course of their lives, it should be no
surprise that research finds that many people never achieve or use formal
thinking fully or consistently, or that they use it only in selected areas with
which they are very familiar (Case & Okomato, 1996). For teachers, the
limitations of Piaget’s ideas suggest a need for additional theories about
development—ones that focus more directly on the social and interpersonal
issues of childhood and adolescence. The next sections describe some of these.
No comments:
Post a Comment